HAEMATO-BIOCHEMICAL CHANGES DURING PREPARTUM CERVICOVAGINAL PROLAPSE IN A SHE BUFFALO

Qazi Mudasir, S.P. Shukla and S.P. Nema

ABSTRACT

A pleuriparous Murrah buffalo advanced pregnancy (about 9 months) having a history of cervicovaginal prolapse with a vaginal tear of about 20 cms was presented to Teaching Veterinary Clinical Service Complex. Haematobiochemical values were nearly normal except serum Ca (6 mg/dl) which was below the normal range. The animal was treated with reposition and retention of the prolapsed mass and made an uneventful recovery.

Keywords: buffalo, cervicovaginal prolapse, haematobiochemical changes

INTRODUCTION

Cervicovaginal prolapse (CVP) is a most common reproductive disorder of ruminants normally in late gestation and can be recognized by the protrusion of varying parts of the vaginal wall and cervix through the vulva so that the vaginal mucosa is exposed (Arthur et al., 2001). The present communication describes haematobiochemical changes during prepartum cervicovaginal prolapse with vaginal injury in a she buffalo.

CASE HISTORY AND OBSERVATION

A pleuriparous Murrah buffalo in advanced pregnancy (about 9 months) was brought to the Teaching Veterinary Clinical Service Complex, College of Veterinary Science and Animal Husbandry, Mhow, with a history of cervicovaginal prolapse with a vaginal tear of about 20 cms. The prolapse had occurred 12 h before being presented at the clinics. The size of the prolapsed mass was larger than the usual size i.e., 35 cms length and 46 cms diameter. The vaginal wall was tense, thicker and hyperemic in appearance (Figure 1). The animal had subnormal temperature of 98.2°F.
antibiotic cover using Dicrysticin-S (5 gm) twice daily with other supportive treatments including anti-inflammatory and analgesics (Avil vet 15 ml I/m and Melonex 15 ml I/m) for the next 5 days. Inj. Mifex (450 ml), 250 ml I/v and remaining 200 ml was given s/c to restore normal calcium levels and to elevate the body temperature. The animal made an uneventful recovery.

HAEMATO-BIOCHEMICAL CHANGES

About 15 ml of blood was collected by juglar vein puncture in a glass test tube; 2 ml of blood was procured in a vial containing EDTA 2.0 mg/ml for haematological studies. The remaining blood was kept for clotting, and serum was separated and centrifuged. The haematological norms viz: Hb, PCV, DLC and TLC were estimated as per the procedure described by Schalm and Jain (1975). The biochemical estimates viz SGPT, SGOT and serum Ca were estimated spectrophotometrically using an auto analyzer. Haematobiochemical values were nearly normal, except for serum Ca (6 mg/dl), which was below the normal range. The genital organs become atonic and there are more chances of prolapse due to calcium deficiency. Pandit et al. (1982) recorded lower levels of serum Ca in buffaloes with genital prolapse.

RESULTS AND DISCUSSION

The haematobiochemical values are presented in Table 1. Usually the size of the prolapsed mass varies approximately from 10 cm to over 30 cms in diameter (Sloss and Dufty, 1980) whereas in present case, it was very large (46 cms) in diameter. The prolapsed mass usually involves greatly distended urinary bladder (Roberts, 1971). Mechanical factors, such as the increasing intra abdominal pressure of late pregnancy along with excessive relaxation of pelvic ligaments and vaginal muscles due to higher levels of estrogen and relaxin are considered significant (Mishra et al., 1998). In the present case, increased intra abdominal pressure of late pregnancy and distended urinary bladder was limiting the easy reposition of the prolapsed mass back to its original place.
Table 1. Haematobiochemical changes in the buffalo.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hb (gm%)</td>
<td>9.2</td>
</tr>
<tr>
<td>2</td>
<td>PCV (%)</td>
<td>27.6</td>
</tr>
<tr>
<td>3</td>
<td>TLC (cumm)</td>
<td>9000</td>
</tr>
<tr>
<td>4</td>
<td>DLC</td>
<td>N (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>SGOT (U/L)</td>
<td>12.73</td>
</tr>
<tr>
<td>6</td>
<td>SGPT (U/L)</td>
<td>64.60</td>
</tr>
<tr>
<td>7</td>
<td>Ca (gm/dl)</td>
<td>6</td>
</tr>
</tbody>
</table>

REFERENCES

Continued from page 122

REFERENCES

