DYSTOCIA DUE TO UTERINE TORSION IN A BUFFALO

G.K. Das, Firdous A. Khan, S. Deori and Uma Shanker

ABSTRACT

The present communication reports a case of dystocia due to uterine torsion in a pluriparous buffalo and its successful treatment using modified Schaffer’s method followed by mutation.

Keywords: dystocia, torsion, buffalo

INTRODUCTION

Uterine torsion is the most frequent cause of dystocia in buffalo, followed by incomplete dilatation of cervix and uterine inertia (Ahmad, 2001). It is observed commonly in pluriparous animals at the time of parturition or during the last month of gestation (Roberts, 1986). The condition accounts for about 29.5 to 30.6% of dystocia cases in this species (Amer et al., 2008). In the present communication, a case of dystocia due to uterine torsion in a buffalo and its successful treatment is reported.

RESULTS AND DISCUSSION

The animal was cast on its right side and uterine torsion was corrected using modified Schaffer’s method by rolling the animal in the direction of torsion. After the first roll, per vaginal examination was done to assess the degree of detorsion. A second roll was needed to detort the uterus completely. This was followed by profuse voiding of fluid from the uterus. Per vaginal examination revealed adequate dilatation of the cervix and anterior longitudinal presentation and dorso-sacral position of the foetus but with lateral deviation of the head. After proper lubrication of the birth canal, the foetus was repelled into the abdominal cavity and the deviation corrected. This was followed by application of snares to both the forelimbs and lower jaw, and a dead male foetus (Figure 1) was removed by gentle caudal traction. Following delivery, the animal was treated with Enrofloxacin (1500 mg IM once daily for 5 days), Meloxicam (75 mg IM), Furazolidone (4 boli IU), DNS (1 litre IV) and a herbal ecbolic Uterotone (150 ml orally for 3 days).

Case Report
Dystocia is less common in the buffalo than cattle, and among buffaloes, the stabled riverine type is more prone than the free-ranging swamp type (Ahmad, 2001). Uterine torsion accounts for most of the cases of maternal dystocia in this species, and the direction is to the right in more than 90% of the cases (Roberts, 1986). Predisposing factors include relatively long uterine ligaments, the low number of smooth muscle cells in the broad ligament, constant confinement, and hilly terrain (Ahmad, 2001). Timely diagnosis and correction of the condition is favorable for both the dam as well as the foetus since hypoxia can result from placental separation even in the absence of unruptured membranes (Sloss and Dufty, 1980). The death of the foetus in the present case may be attributed to the delay in presentation to the clinics leading to foetal hypoxia due to separation of foetal membranes.

REFERENCES


