ABSTRACT

An experiment was conducted to study the effect of feeding complete rations on nutrient utilization compared to conventional system of feeding in Murrah buffalo bulls. Four adult Murrah buffalo bulls (5 years; 350±9.36 kg BW) divided into four groups in a 4x4 Latin square switch over design were offered isonitrogenous complete rations comprising of locally available crop residues viz. maize stover (T1), red gram straw (T2) and black gram straw (T3) and concentrate mixture in 60:40 ratio, respectively and a conventional ration (C) for a period of 28 days. The DM intake (kg/d) was similar in all the experimental rations. The digestibility (%) of CP, EE, CF, NDF, ADF, hemicelluloses and cellulose were higher (P<0.01) in buffalo bulls fed complete rations than those fed conventional ration. However, the digestibility (%) of DM (P<0.01) and OM (P<0.05) were higher in T1 and NEF (P<0.05) was higher in T2 when compared to other experimental rations.

The Nitrogen retention (g/d) was higher (P<0.01) in the animals fed complete rations than those fed conventional ration and the differences for calcium and phosphorus balance (g/d) were not significant among the different experimental rations. The DM and TDN intake per W kg$^{0.75}$ were higher (P<0.05) in buffaloes fed C while higher (P<0.05) DCP intake per W kg$^{0.75}$ was observed in buffalo bulls fed T2. Hence, it is concluded that the crop residue based complete rations had a significant effect on nutrient utilization in Murrah buffalo bulls compared to conventional ration.

Keywords: crop residues, complete rations, nutrient balance, nutrient utilization

INTRODUCTION

The scarcity of feed and fodder, escalating demand of concentrate feed ingredients for human consumption and ever increasing cost has led to the utilization of non-conventional and non-competitive crop residues and agro-industrial by-products in livestock feeding (Waje et al., 2010). However, these crop residues are poor in palatability and low in nutritive value which can be improved subjecting them to suitable processing methods. The concept of feeding complete rations comprising of locally available crop residues is one of the best method to provide the balanced supply of nutrients.

Complete ration not only improves the feeding value of a poor quality crop residue but

1Department of Animal Nutrition, NTR College of Veterinary Science, Gannavaram, India, *E-mail: dr_rajakishore@yahoo.co.in
2Department of Animal Nutrition, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh, India
also simplifies feeding, minimizes labour and maximizes automation, control ratio of roughage to concentrate, provides uniform feed intake, reduces the feed wastage, enhances nitrogen balance and milk production, reduces the cost of feeding (Raut et al., 2002; Hundal et al., 2004; Lailer et al., 2010). Different crop residues are available locally which by scientific and judicious combination with the conventional concentrate feed ingredients can be utilized in the preparation of complete rations for live stock. The objective of the present experiment is to study effect of feeding locally available crop residue based complete rations on nutrient utilization in Murrah buffaloes compared to a conventional system of feeding.

MATERIALS AND METHODS

Experimental rations

The experiment was conducted at Department of Animal Nutrition, NTR College of Veterinary Science, Gannavaram, Andhra Pradesh, India. Locally available crop residues viz. maize stover, red gram straw and black gram straw were procured from the farmers’ fields in nearby villages of Gannavaram. Experimental concentrate mixtures were prepared at the feed mixing plant, Department of Animal Nutrition, NTR College of Veterinary Science, Gannavaram. Three iso-nitrogenous complete rations viz. comprising of maize stover (T1), red gram straw (T2) or black gram straw (T3) were prepared by mixing roughages and concentrates in 60:40 ratio and compared with a conventional ration (C) comprising of 5 kg hybrid napier, 4 kg paddy straw and 1.5 kg concentrate mixture. The ingredient composition of experimental rations fed to buffalo bulls is furnished in Table 1.

Experimental design

In a 4 X 4 Latin Square Design, four graded Murrah buffaloes (5 yrs; 350±9.36 kg BW) were fed three iso-nitrogenous complete rations and compared with a conventional ration. About 6.0 kg each of respective complete rations were offered in two divided diets at 9.00 AM and 3.00 PM all through the experimental period. The buffalo bulls were fed either conventional ration or complete rations to meet the nutrient requirements (ICAR, 1998).

Each period of LSD consisted of a 21-day preliminary period and a 7-day collection period. Body weights were recorded for two consecutive days prior to start and after the metabolism trial and the average was taken as the actual body weight. During the metabolism trial, daily feed intake, feed refusals if any as well as faeces and urine voided were recorded daily at 9.00 AM. Daily representative samples of the feeds, residues, faeces and urine were collected and pooled animal wise. Samples were prepared and preserved in the respective containers for subsequent analysis.

The samples were analyzed for proximate constituents (AOAC, 2007) and fibre fractions (Van Soest et al., 1991). Estimation of calcium and phosphorous in feed and faeces was done as per Talapatra et al. (1940) and in urine samples was done according to the methods described by Ferro and Ham (1957) and Fiske and Subba Row (1925), respectively. The data were analyzed statistically (Snedecor and Cochran, 1989) and tested for significance by Duncan’s multiple range test (Duncan, 1955) using SPSS 17.0 version.
RESULTS AND DISCUSSION

The chemical composition of conventional and complete rations fed to the buffalo bulls during metabolism trial were presented in Table 2. The daily dry matter intake expressed in terms of kg/100 kg BW or as g/kg W$^{0.75}$ was similar in all the groups (Table 2) and was higher than the requirements as suggested by ICAR (1998) and Kearl (1982). This indicated that the diets were palatable and that blending of roughages and concentrates in the form of complete rations has not affected the palatability. Gupta et al. (2006) and Pandey et al. (2009) did not find any significant difference in DM intake in fistulated crossbred male cattle.

The digestibility co-efficient (Table 3) of dry matter (DM), organic matter (OM), crude protein (CP), ether extract (EE), crude fibre (CF) (P<0.01) and NFE (P<0.05) were higher in bulls fed complete rations as compared to conventional ration. These observations corroborated with the findings of Kumar et al. (2010) in lactating Murrah buffalo bulls who reported increase digestibility of nutrients (P<0.01) on sheanut cake based complete diets compared to conventional system of feeding and Khan et al. (2010) in lactating cross bred cows fed wheat straw based complete rations. Further, the digestibility of fibre fractions (Table 2) increased (P<0.01) in buffalo bulls fed complete ration compared to those fed conventional ration. Similar to these observations earlier workers (Reddy et al., 2001; Sahoo et al., 2002; Samanta et al., 2006) reported improvement in the digestibility of fibre fractions in cattle and buffaloes fed complete rations.

The Digestible Crude Protein (DCP) intake (g/ W kg$^{0.75}$) was higher (P<0.01) in buffalo bulls fed complete ration than those fed conventional ration. The higher DCP intake observed in buffalo bulls fed complete ration may be attributed to their higher CP digestibility. Similarly, the TDN content expressed as percent in the diet consumed or as g/ W kg$^{0.75}$ increased (P<0.05) in buffalo bulls fed complete ration as compared to the conventional ration which may be a reflection of increased nutrient digestibility in buffaloes fed complete ration.

All the buffalo bulls were positive nitrogen, calcium and phosphorous balance (Table 4). The N retention expressed as (g/d) or as % of intake or as % absorbed was higher (P<0.01) in animals fed complete rations than those fed conventional ration. This might be due to the better digestibility of nutrients leading to optimum utilization of N by dietary microbes (Reddy et al., 2002). Lailer et al., 2010 in Murrah male calves; Pandya et al., 2009 in cross bred calves; Thakur et al., 2006 in buffalo calves and Reddy et al., 1994 in cross bred heifers also reported similar observations. The calcium retention expressed as g/d was similar among bulls fed complete and conventional rations. However, the calcium retention expressed either as % of intake or as % absorbed was higher (P<0.01) in buffalo bulls fed complete rations compared to conventional ration. This is in agreement with the findings of earlier workers (Pandya et al., 2009 in cross bred calves; Kaur et al., 2004 and Thakur et al., 2006 in buffalo calves). The phosphorus retention expressed either as g/d or as % of intake or as % absorbed was similar among the buffalo bulls fed complete and conventional rations. Similar to these observations earlier workers (Pandya et al., 2009; Reddy et al., 2002) reported positive phosphorus balance in animals fed complete rations.

To conclude, incorporation of crop residue based complete rations in the daily rations of livestock had improved digestibility of nutrients and balances of nitrogen, calcium and phosphorous
Table 1. Ingredient composition of conventional and complete rations fed to Murrah buffalo bulls.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Conventional ration</th>
<th>Complete rations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>T₁</td>
</tr>
<tr>
<td>Roughage (Kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid napier</td>
<td>5.0</td>
<td>-</td>
</tr>
<tr>
<td>Paddy straw</td>
<td>4.0</td>
<td>-</td>
</tr>
<tr>
<td>Maize stover</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>Red gram straw</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Black gram straw</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Concentrate (Kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize grain</td>
<td>30.0</td>
<td>5.5</td>
</tr>
<tr>
<td>De-oiled rice bran</td>
<td>25.0</td>
<td>5.5</td>
</tr>
<tr>
<td>Cotton seed cake</td>
<td>22.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Gingelly cake</td>
<td>20.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Mineral mixture</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Salt</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Overall CP (%)</td>
<td>12.38</td>
<td>12.77</td>
</tr>
</tbody>
</table>

Table 2. Chemical composition (% DM basis except for DM) of conventional and complete rations fed to Murrah buffalo bulls.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conventional ration (C)</th>
<th>Complete rations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hybrid Napier</td>
<td>Paddy straw</td>
</tr>
<tr>
<td>Organic matter</td>
<td>89.2</td>
<td>87.5</td>
</tr>
<tr>
<td>Total ash</td>
<td>10.7</td>
<td>12.5</td>
</tr>
<tr>
<td>Crude protein</td>
<td>7.88</td>
<td>2.90</td>
</tr>
<tr>
<td>Ether extract</td>
<td>2.24</td>
<td>1.50</td>
</tr>
<tr>
<td>Crude fibre</td>
<td>32.4</td>
<td>32.2</td>
</tr>
<tr>
<td>Nitrogen free extract</td>
<td>46.7</td>
<td>50.9</td>
</tr>
<tr>
<td>Neutral detergent fibre</td>
<td>73.8</td>
<td>74.7</td>
</tr>
<tr>
<td>Acid detergent fibre</td>
<td>47.2</td>
<td>46.6</td>
</tr>
<tr>
<td>Hemi-cellulose</td>
<td>26.6</td>
<td>28.1</td>
</tr>
<tr>
<td>Cellulose</td>
<td>39.3</td>
<td>38.1</td>
</tr>
<tr>
<td>Acid detergent lignin</td>
<td>5.90</td>
<td>8.90</td>
</tr>
<tr>
<td>Calcium</td>
<td>1.12</td>
<td>0.59</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.59</td>
<td>0.36</td>
</tr>
</tbody>
</table>
Table 3. Effect of feeding conventional and complete rations on intake, digestibility of nutrients and plane of nutrition in buffalo bulls.

<table>
<thead>
<tr>
<th>Particulars</th>
<th>C</th>
<th>T<sub>1</sub></th>
<th>T<sub>2</sub></th>
<th>T<sub>3</sub></th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kg/100 BW</td>
<td>1.80</td>
<td>1.70</td>
<td>1.68</td>
<td>1.67</td>
<td>0.04</td>
</tr>
<tr>
<td>g/kg W<sup>0.75</sup></td>
<td>74.33</td>
<td>73.09</td>
<td>74.13</td>
<td>73.08</td>
<td>0.33</td>
</tr>
<tr>
<td>Digestibility of nutrients (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter**</td>
<td>52.86<sup>c</sup></td>
<td>56.01<sup>a</sup></td>
<td>53.99<sup>bc</sup></td>
<td>54.20<sup>b</sup></td>
<td>0.35</td>
</tr>
<tr>
<td>Organic matter*</td>
<td>57.32<sup>b</sup></td>
<td>58.77<sup>a</sup></td>
<td>58.19<sup>ab</sup></td>
<td>57.49<sup>ab</sup></td>
<td>0.24</td>
</tr>
<tr>
<td>Crude protein**</td>
<td>56.26<sup>d</sup></td>
<td>66.57<sup>a</sup></td>
<td>61.16<sup>c</sup></td>
<td>63.75<sup>b</sup></td>
<td>1.00</td>
</tr>
<tr>
<td>Ether extract**</td>
<td>55.03<sup>c</sup></td>
<td>59.36<sup>a</sup></td>
<td>57.37<sup>b</sup></td>
<td>58.32<sup>b</sup></td>
<td>0.44</td>
</tr>
<tr>
<td>Crude eibre**</td>
<td>48.33<sup>c</sup></td>
<td>54.82<sup>a</sup></td>
<td>51.75<sup>b</sup></td>
<td>52.92<sup>b</sup></td>
<td>0.63</td>
</tr>
<tr>
<td>Nitrogen Free Extract*</td>
<td>62.69<sup>b</sup></td>
<td>62.88<sup>b</sup></td>
<td>65.08<sup>b</sup></td>
<td>61.69<sup>b</sup></td>
<td>0.45</td>
</tr>
<tr>
<td>Neutral detergent fibre**</td>
<td>48.50<sup>d</sup></td>
<td>53.91<sup>a</sup></td>
<td>51.51<sup>c</sup></td>
<td>52.75<sup>b</sup></td>
<td>0.55</td>
</tr>
<tr>
<td>Acid detergent fibre**</td>
<td>44.64<sup>c</sup></td>
<td>49.31<sup>a</sup></td>
<td>46.75<sup>b</sup></td>
<td>47.93<sup>b</sup></td>
<td>0.51</td>
</tr>
<tr>
<td>Hemi-cellulose**</td>
<td>53.99<sup>b</sup></td>
<td>63.22<sup>a</sup></td>
<td>57.90<sup>b</sup></td>
<td>63.25<sup>a</sup></td>
<td>1.19</td>
</tr>
<tr>
<td>Cellulose**</td>
<td>59.13<sup>c</sup></td>
<td>62.85<sup>ab</sup></td>
<td>61.75<sup>b</sup></td>
<td>64.43<sup>a</sup></td>
<td>0.55</td>
</tr>
<tr>
<td>Nutrient intake (g/kg W<sup>0.75</sup>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCP intake**</td>
<td>5.18<sup>d</sup></td>
<td>6.36<sup>a</sup></td>
<td>5.72<sup>c</sup></td>
<td>5.97<sup>b</sup></td>
<td>0.12</td>
</tr>
<tr>
<td>TDN intake*</td>
<td>40.59<sup>b</sup></td>
<td>42.78<sup>a</sup></td>
<td>41.17<sup>b</sup></td>
<td>41.19<sup>b</sup></td>
<td>0.29</td>
</tr>
<tr>
<td>Plane of nutrients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCP (%)**</td>
<td>6.96<sup>d</sup></td>
<td>8.50<sup>a</sup></td>
<td>7.72<sup>c</sup></td>
<td>8.17<sup>b</sup></td>
<td>0.15</td>
</tr>
<tr>
<td>TDN (%)**</td>
<td>54.61<sup>c</sup></td>
<td>57.15<sup>a</sup></td>
<td>55.54<sup>bc</sup></td>
<td>56.36<sup>ab</sup></td>
<td>0.29</td>
</tr>
</tbody>
</table>

^{abcd} Values in the rows bearing different superscripts differ significantly.

*P<0.05 **P<0.01
Table 4. Effect of feeding conventional and complete rations on intake and balance (g/d) of N, Ca and P in buffalo bulls.

<table>
<thead>
<tr>
<th>Particulars</th>
<th>C</th>
<th>T<sub>1</sub></th>
<th>T<sub>2</sub></th>
<th>T<sub>3</sub></th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, g/d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake**</td>
<td>123.2<sup>a</sup></td>
<td>114.56<sup>b</sup></td>
<td>113.68<sup>b</sup></td>
<td>115.2<sup>b</sup></td>
<td>0.25</td>
</tr>
<tr>
<td>N outgo, g/d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In faeces**</td>
<td>54.11<sup>c</sup></td>
<td>45.14<sup>a</sup></td>
<td>44.01<sup>b</sup></td>
<td>41.52<sup>b</sup></td>
<td>0.37</td>
</tr>
<tr>
<td>In urine**</td>
<td>22.25<sup>a</sup></td>
<td>15.75<sup>c</sup></td>
<td>20.15<sup>b</sup></td>
<td>21.79<sup>a</sup></td>
<td>0.29</td>
</tr>
<tr>
<td>Total**</td>
<td>76.36<sup>a</sup></td>
<td>60.89<sup>c</sup></td>
<td>64.16<sup>b</sup></td>
<td>63.31<sup>b</sup></td>
<td>0.31</td>
</tr>
<tr>
<td>N balance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retention, g/d**</td>
<td>46.84<sup>d</sup></td>
<td>53.67<sup>b</sup></td>
<td>49.52<sup>c</sup></td>
<td>51.89<sup>b</sup></td>
<td>0.31</td>
</tr>
<tr>
<td>Percent of intake**</td>
<td>38.01<sup>b</sup></td>
<td>46.84<sup>a</sup></td>
<td>43.56<sup>a</sup></td>
<td>45.01<sup>a</sup></td>
<td>0.37</td>
</tr>
<tr>
<td>Percent of absorbed**</td>
<td>67.79<sup>c</sup></td>
<td>73.31<sup>a</sup></td>
<td>71.08<sup>b</sup></td>
<td>70.43<sup>b</sup></td>
<td>0.54</td>
</tr>
<tr>
<td>Calcium, g/d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake **</td>
<td>51.39<sup>d</sup></td>
<td>65.52<sup>a</sup></td>
<td>64.13<sup>c</sup></td>
<td>64.63<sup>b</sup></td>
<td>1.50</td>
</tr>
<tr>
<td>Ca outgo, g/d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In faeces**</td>
<td>27.49<sup>c</sup></td>
<td>43.00<sup>a</sup></td>
<td>41.17<sup>b</sup></td>
<td>40.99<sup>b</sup></td>
<td>1.61</td>
</tr>
<tr>
<td>In urine**</td>
<td>8.87<sup>a</sup></td>
<td>6.81<sup>c</sup></td>
<td>7.62<sup>b</sup></td>
<td>8.42<sup>a</sup></td>
<td>0.23</td>
</tr>
<tr>
<td>Total**</td>
<td>36.36<sup>c</sup></td>
<td>49.81<sup>a</sup></td>
<td>48.79<sup>b</sup></td>
<td>49.41<sup>ab</sup></td>
<td>1.46</td>
</tr>
<tr>
<td>Ca balance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retention, g/d</td>
<td>15.03</td>
<td>15.71</td>
<td>15.34</td>
<td>15.22</td>
<td>0.12</td>
</tr>
<tr>
<td>Percent of intake**</td>
<td>29.25<sup>a</sup></td>
<td>23.97<sup>b</sup></td>
<td>23.92<sup>b</sup></td>
<td>23.55<sup>b</sup></td>
<td>0.63</td>
</tr>
<tr>
<td>Percent of absorbed**</td>
<td>62.90<sup>c</sup></td>
<td>69.76<sup>a</sup></td>
<td>66.81<sup>b</sup></td>
<td>64.38<sup>bc</sup></td>
<td>0.76</td>
</tr>
<tr>
<td>Phosphorus, g/d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake**</td>
<td>41.87<sup>a</sup></td>
<td>41.44<sup>b</sup></td>
<td>41.07<sup>c</sup></td>
<td>40.46<sup>d</sup></td>
<td>0.13</td>
</tr>
<tr>
<td>P outgo, g/d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In faeces**</td>
<td>22.50<sup>a</sup></td>
<td>21.73<sup>b</sup></td>
<td>20.83<sup>c</sup></td>
<td>20.94<sup>c</sup></td>
<td>0.20</td>
</tr>
<tr>
<td>In urine</td>
<td>7.47</td>
<td>7.59</td>
<td>7.89</td>
<td>7.26</td>
<td>0.13</td>
</tr>
<tr>
<td>Total*</td>
<td>29.97<sup>a</sup></td>
<td>29.32<sup>ab</sup></td>
<td>28.72<sup>bc</sup></td>
<td>28.20<sup>c</sup></td>
<td>0.21</td>
</tr>
<tr>
<td>P balance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retention, g/d</td>
<td>11.90</td>
<td>12.12</td>
<td>12.35</td>
<td>12.26</td>
<td>0.13</td>
</tr>
<tr>
<td>Percent of intake**</td>
<td>28.42</td>
<td>29.25</td>
<td>30.07</td>
<td>30.31</td>
<td>0.34</td>
</tr>
<tr>
<td>Percent of absorbed</td>
<td>61.44</td>
<td>61.49</td>
<td>61.01</td>
<td>62.77</td>
<td>0.56</td>
</tr>
</tbody>
</table>

^{abcd} Values in the rows bearing different superscripts differ significantly.

*P<0.05 **P<0.01
without any adverse effect on feed intake as compared to that of conventional system of feeding.

ACKNOWLEDGEMENTS

This paper formed part of the Ph.D. Thesis submitted by the first author to SVVU, Tirupati. The financial support rendered by RKVY (Rashtriya Krishi Vikas Yojana) Research Project, Government of India for creation of facilities is gratefully acknowledged.

REFERENCES

Kearl, L.C. 1982. Nutritive Requirements of Ruminants in Developing Countries. International Feedstuffs Institute, Utah Agricultural Experimental Station, Utah State University, Logan, USA.

